
Role of Pulse Phase and Direction in Two-Dimensional Optical Spectroscopy

Dorine Keusters, Howe-Siang Tan, and Warren S. Warren*
Center for Ultrafast Laser Applications, Department of Chemistry, Princeton UniVersity,
Princeton, New Jersey 08544

ReceiVed: July 12, 1999; In Final Form: September 14, 1999

This paper examines the parallels between magnetic resonance and optical spectroscopy, with the goal of
determining to what extent the benefits of 2DNMR might be extended into the optical regime. Precise optical
analogues of the simplest 2DNMR sequences (collinear pulse sequences with phased laser pulse generation,
phase sensitive detection, and phase cycling) are now feasible, and we demonstrate that they do generate
cross-peaks which reveal common energy levels, even when averaged over the distribution of pulse flip angles
expected in most optical experiments. One enormous difference between laser and NMR experimentssthe
use of pulses in different directions in opticsscan be exploited to eliminate much of the phase cycling required
in NMR. Phase control does permit rotating-frame detection, which is likely to be a substantial practical
advantage. Finally, we point out optical analogues of the simplest 2DNMR sequences (COSY and NOESY)
will likely add little to our understanding of ultrafast dynamics. Optical analogues of more complex 2D
sequences, combining phase control for selective refocusing with noncollinear pulse generation for coherence
pathway selection, show more promise.

1. Introduction

Applications of tailored (phase/frequency/amplitude modu-
lated) radio waves are ubiquitous, largely because of techno-
logical maturity: generation, propagation, and detection of
arbitrary waveforms up to 1 GHz is completely straightforward.
The computer and communications revolutions drove these
developments, but NMR spectroscopists certainly profited from
them decades ago. Coherent spectroscopysthe use of radiation
fields with well-defined phase properties to extract information
about atoms and moleculessbegan around 1950 with demon-
stration of the “spin echo” in nuclear magnetic resonance1 (a
simple two-pulse sequence which separated inhomogeneous
from homogeneous line broadening). In the ensuing decades
literally hundreds of different NMR pulse sequences (often with
shaped radio frequency (rf) pulses) have been developed and
are now in routine use by organic chemists to unravel molecular
structure. In 1957 Feynman, Vernon, and Hellwarth published
a landmark paper pointing out that all two-level systems are
mathematically identical2 and that if coherent light fields were
ever created, it would be possible to use these same methods
on optical transitions. Not surprisingly, then, the invention of
the laser in 1960 was followed quickly by demonstration of
the “photon echo”3sthe optical version of the “spin echo.” What
is surprising, at least at first glance, is that no comparable
expansion of coherent laser pulse sequences has occurred. The
vast majority of laser experiments use one or two laser pulses
and make the pulses noncollinear or use multiple colorssthus
intrinsically averaging the optical phase over a distance com-
parable to a wavelength. Such sequences (particularly with
“ultrafast” laser pulses, which can probe dynamics on a
femtosecond time scale) have significantly enhanced our
understanding of reaction dynamics and energy transfer.4 Over
the past decade, methods for generating, shaping,5 and detecting6

ultrafast laser pulses have been tremendously extended. Ultrafast
laser applications are beginning to move more into the scientific
mainstream, and optical analogues of many radio frequency
applications are just now becoming technologically feasible in
a wide range of fields.

To spectroscopists, one of the most tantalizing analogues is
“two-dimensional optical spectroscopy”: extension of the NMR
technique (recognized by Richard Ernst’s Nobel Prize) today
permits determination of tertiary structure in molecules as large
as small proteins. Two-dimensional NMR (2DNMR)7 permits
clean and general detection of coupled spins, either via the
through-bond scalar coupling or the through-space nuclear
Overhauser effect (NOE). A general method for detecting
couplings between chromophores would be particularly valuable
in the infrared and could significantly enhance our understanding
of energy transport and transient structural changes in chemical
reactions.

This paper will examine the parallels between magnetic
resonance and optical spectroscopy, with the goal of determining
to what extent the benefits of 2DNMR might be extended into
the optical regime. We begin with a brief review of the simplest
2DNMR experiments, emphasizing points that are often omitted
in textbooks because they are well-understood in the NMR
community, but which will turn out to be very important for
optical applications. We also review some of the differences
between optics and magnetic resonance spectroscopy. We then
develop precise optical analogues of the simplest 2DNMR
sequences. Our calculations focus on collinear pulse sequences
with phased laser pulse generation, phase sensitive detection,
and phase cycling. Recent advances in pulse shaping technology
make such sequences feasible,5 and we demonstrate that they
do generate cross-peaks which reveal common energy levels,
even when averaged over the distribution of pulse flip angles
expected in most optical experiments. We then point out that
one enormous difference between laser and NMR experimentss
the use of pulses in different directions in opticsscan be
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exploited to eliminate much of the phase cycling required in
NMR. Thus, for example, direct optical implementation of
COSY-like (COSY) correlated spectroscopy) sequences with
noncollinear pulses turns out not to require explicit phase control
over the individual pulses, as has been observed by Hybl and
co-workers.8 Phase control does permit rotating-frame detection,9

which is likely to be a substantial practical advantage. Finally,
we discuss the potential advantages of two-dimensional optical
techniques. While optical spectroscopists are usually familiar
with only the simplest 2DNMR sequences, we point out that
analogues of these sequences will likely add little to our
understanding of ultrafast dynamics. Optical analogues of more
complex 2D sequences, which combine phase control with
noncollinear pulse generation, show more promise.

2. Background: Two-Dimensional NMR

Two-dimensional nuclear magnetic resonance was pioneered
in the 1970s with applications of very simple pulse sequences
to small molecules.7 We will briefly review some of the
properties of the two best-known early sequences (COSY and
NOESY) in order to better understand the possible extensions
to optical spectroscopy.

The simplest and best-known two-dimensional pulse sequence
is the COSY sequence, which consists of two radio frequency
pulses and two delays. Most NMR pulse sequences still use
constant-amplitude, constant-frequency (“rectangular”) radio
frequency pulses for broadband excitation. Rectangular pulses
are used not because pulse shaping is difficult (almost all modern
NMR spectrometers can generate arbitrary amplitude and
frequency modulation)10 but because it is often unnecessary for
the reasons we discuss below. Rectangular pulses are completely
specified by their carrier wave frequency, their “flip angle”θ
) γB1t (γ is the gyromagnetic ratio,B1 is the peak field strength,
andt is the length) and their phaseφ with respect to some carrier
wave internal to the spectrometer. The most commonly values
of θ are 90 and 180°; the most commonly used phases areφ )
(0, 90, 180, 270), which are denoted by subscripts (x, y, -x,
-y), respectively.

In the COSY sequence (90x - t1 - 90x - t2), the entire free
induction decay (FID) is sampled for a specific value oft1, so
each application of the pulse sequence leads to signal (hetero-
dyne detected, saving components both in-phase and in-
quadrature with respect to the spectrometer’s carrier wave) from
many different values of the delayt2. The two channels are then
combined into a single complex signal (I+ ) Ix + iI y) which
reflects pure absorption. This operator is, of course, non-
Hermitian and is only detectable because NMR is an ensemble-
averaged experiment. It has recently been recognized that the
ability to detect such operators permits some pulse sequence
improvements.11 The sequence is then repeated with different
values oft1, to create a signal array, and processed by complex
two-dimensional Fourier transformation.

The calculated two-dimensional spectrum (frequenciesf1 and
f2, respectively) is completely in the “rotating frame” of the
carrier wave used to define the phase relation between the two
pulses. For example, any signal atf2 ) 0 Hz corresponds to
exact resonance at the carrier wave frequency, typically hundreds
of megahertz.

COSY spectra contain “diagonal peaks” (f1 ) f2) and
“antidiagonal peaks” (f1 ) -f2) for all of the resonances. More
importantly, they contain “cross-peaks” (f1 * (f2) between
resonances involving coupled but inequivalent nuclear spins.
The nature of the scalar coupling in NMR implies that the cross-
peaks reveal which resonances correspond to spins separated
by only a few (typically 1-3) chemical bonds.

Physically close but nonbonded atoms (resulting, for example,
from the tertiary structure of a protein) do not give cross-peaks
in a COSY experiment but do give cross-peaks in a three pulse
experiment (90x - t1 - 90x - τ - 90x - t2), called a NOESY
experiment. These cross-peaks arise through the nuclear Over-
hauser effect (hence the acronym) which is essentially the
nuclear dipole-dipole interaction averaged over molecular
rotation and internal diffusion. The delayτ is typically long (1
s) to let this relaxation mechanism generate a measurable effect.

COSY and NOESY sequences have many desirable features.
For example, they are not very sensitive to pulse flip angle
errors. In COSY, if the second pulse flip angle is less than 90°,
the detected magnetization is reduced and the antidiagonal peaks
become weaker than the diagonal peaks. If the first pulse flip
angle is less than 90°, some magnetization remains along the
z-axis duringt1 and does not evolve during that delay. This
reduces the intensity of all the peaks discussed above and creates
an additional set of peaks atf1 ) 0 Hz. The positions of the
cross-peaks (which contain the most important information) are
not affected by flip angle errors. The effects of flip angle error
in NOESY are similar, but the signal falloff is more rapid as
the error increases.

However, it is important to realize that neither COSY nor
NOESY extracts molecular information that is inaccessible by
other means. Double-resonance selective irradiation experiments
(essentially “pump-probe” experiments in optical language)
give the same information about which transitions share an
energy level.12 Selective inversion of one resonance, followed
by a delay during which the nuclear Overhauser effect perturbs
populations of nearby spins, also gives physical proximity.13

Both of these experiments long predated the development of
two-dimensional spectroscopy. COSY and NOESY sequences
simply take advantage of what is easy to do in magnetic
resonance (apply broadband pulses that completely excite
transverse magnetization for all resonances). They substituteN
different increments of the indirectly detected delay (and
complete detection of the signal, including phase) forN pump-
probe experiments with different pump frequencies.

The real power of two-dimensional NMR comes from more
complicated sequences, which give information that could not
have been obtained by simpler experiments. Historically the first
such sequence was very similar to NOESY, except that the
second delay was incremented instead of the first (90x - τ -
90x - t1 - 90x - t2).13 If τ is chosen to be at least comparable
to the reciprocal of a typical coupling (50-500 ms in isotropic
liquids, 1-10 ms in oriented materials), this “multiple-quantum”
(MQ) experiment gives resonances from “forbidden” (∆M *
1) transitions in the indirectly detected dimension. It is possible
to observe multiple-quantum transitions by continuous irradia-
tion, but the peaks are weak and significantly broadened. In
addition, seemingly highly forbidden transitions (such as the

Figure 1. Generic two-dimensional NMR pulse sequence divided into
four intervals. The first is a “preparation period” whose pulse sequence
generates a propagatorÛ. The magnetization evolves freely for the
evolution periodt1, and then a “mixing period” with propagatorV̂ is
applied. Finally, the magnetization is allowed to evolve freely again
for the “detection period”t2.
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six-spin flip in oriented benzene) can be seen in MQ experiments
with transition intensities comparable to the allowed transi-
tions.13

In modern NMR texts a generic two-dimensional pulse
sequence is divided into four intervals (Figure 1). Starting from
an initial density matrixGinit, we apply a “preparation period”
whose pulse sequence generates a propagatorÛ. The magnetiza-
tion evolves freely for the evolution periodt1; then a “mixing
period” with propagatorV̂ is applied. Finally, the magnetization
is allowed to evolve freely again for the “detection period”t2.
The observed signal can be calculated readily in the Hamiltonian
eigenbasis:

with a similar expression fory magnetization. Note thatt1 (the
“indirectly detected dimension”) only appears in this equation
in the final term, which is multiplied by differences in energy
between eigenstates. This is the fundamental reason why two-
dimensional spectroscopy is useful. ChangingÛ andV̂ changes
the selection rules in the indirectly detected dimension, but the
t1 dependence of the signal accurately reflects how the spins
evolved during the evolution period, even though the signal is
only detected duringt2. For COSY the preparation and mixing
periods contain one pulse each. For NOESY the preparation
period is the first pulse, and the mixing period is the last two
pulses and intervening delay. For the multiple-quantum sequence
the preparation period is the first two pulses and delay, and the
mixing period is the final pulse. Note that eq 1 is nonperturbative
in nature. The propagatorsU andV can be (and virtually always
are) substantially different from the identity matrix.

Phase cycling also plays an important role in modern pulse
sequences. One drawback of the COSY sequence is that the
indirectly detected dimension produces two peaks for each
resonance, so the spectral bandwidth (hence number of required
experiments to achieve a specific final resolution) is twice as
large as the normal spectral bandwidth. Mathematically, this
arises because the first 90° pulse transformsz-magnetization
into y-magnetization, which can be written as a sum of spin
raising and lowering operators (Iy ) (I+ - I-)/2i) at positive
and negative frequencies, respectively. This problem can be
fixed with “hypercomplex detection”:7 repeating the COSY
experiment with the first pulse changed to ay pulse. This 90°
phase shift in the radio frequency field producesx-magnetization
after the second pulse (Ix ) (I+ + I-)/2). Multiplying the signal
in the first experiment byi and coadding is then equivalent to
saving only the pure raising operatorI+ ) Ix + iI y. The
antidiagonal peaks are then eliminated, and only half as many
values oft1 are needed. More generally, a transition between
two states separated by net absorption ofN photons will
experience a phase shift ofNφ if all of the pulses used to excite
that transition are phase shifted by an amountφ. Thus, adding
together six multiple-quantum experiments, corresponding to
phase shifting the first two pulses by 0, 60, 120, 180, 240, and
300°, would suppress all but the zero- and six-quantum
coherences in benzene.13 In practice it is more common to keep
the first two pulse phases constant and instead decrement the
phase of the third pulse and the phase of the detecting field,
but this is mathematically equivalent.

Over the past few decades, 2DNMR has evolved into an
extraordinarily powerful set of techniques for structural deter-
mination in molecules as large as small proteins (>25 kDa).14

However, none of the sequences above are in common use
in their original forms. Modern sequences commonly include
irradiation at multiple resonance frequencies (1H, 13C, 15N; 20
pulses are not unusual), gradient pulses to select specific
coherence pathways, solvent suppression, and various forms of
pulse phase cycling. In general these sequences14 are optimized
to exploit very detailed knowledge about the spin Hamiltonian
of a protein.

For example, there are only 20 amino acids; the spectrum of
each is well-known and changes little when the amino acid is
incorporated into a protein. The scalar coupling between13C
and a directly bonded proton is also nearly independent of spin
environment. Thus, it is possible to select a delay to permit
complete coherence transfer between these two spins, or even
to transfer coherence further along a chain. For these sequences,
pulse flip angles and phases are generally critical. Furthermore,
the pulse sequences are often designed to alter the effective
molecular Hamiltonian during some of the evolution.

The carbon-proton coupling can be averaged away by
rotating the carbon magnetization rapidly (compared to the
reciprocal of the coupling matrix element).15 Evolution due to
chemical shift differences can be removed with multiple echo
pulses.16 One upper limit of realistic pulse sequence complexity
was approached 20 years ago, with “multiple-quantum selective
excitation sequences” which actually transferred intensity into
selected multiple-quantum coherences rather than simply sup-
pressing the signal from undesired coherences. Sequences with
upwards of 1000 pulses were demonstrated experimentally, all
with well-defined and important phase relations.12

3. Subtle Differences between Laser Spectroscopy and
NMR

One important reason why optical multiple-pulse sequences
have developed far more slowly than NMR sequences is that
implementing useful pulse shaping, phase-controlled multiple
pulse sequences, or phase detection with optical fields is
technologically much more difficult than in the NMR case.
Largely for this reason, programmable pulse shaping with a
temporal resolution of 50-100 fs and high powers17 has played
a central role in the recent resurgence of interest in laser selective
chemistry and quantum control,18 and the technological obstacles
which seemed formidable for many years have essentially
disappeared. There are, however, some fundamental spectro-
scopic differences which must be seriously considered in
evaluating the potential value of optical two-dimensional
techniques.

Phrased in the language of optical spectroscopists, all proton
NMR transitions have the same dipole moment, all samples are
optically thin, NMR transmitters are perfectly stable monochro-
matic radiation sources, and the entire spectrum has a small
bandwidth which means that rectangular pulses easily have a
bandwidth which vastly exceeds the entire spectral width. This
often makes more complex wave forms unnecesary. None of
these assumptions is generally true for laser spectroscopy. These
differences are important, but they have been extensively
discussed in previous literature.10,19Here we will focus on some
less obvious effects.

(1) NMR samples intrinsically absorb and emit circularly
polarized radiation. As soon as the Zeeman interaction of the
nuclear dipoles with the external magnetic field exceeds the
strength of internuclear dipole-dipole or electric quadrupole

〈Ix〉 ) Tr[IxF(t1, t2)]

) Tr[Ixe
-iĤt2/pV̂e-iĤt1/pÛFinitÛ

qeiĤt1/pV̂qeiĤt2/p]

) ∑
k,l

(V̂qe-iĤt2/pIx
-iĤt2/p)kl (ÛFinitÛ

q)lke
-i(El-Ek)t1/p (1)
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interactions, thez-component of the spin angular momentum
becomes a good quantum number. Absorption with selection
rule ∆M ) +1, or emission with selection rule∆M ) -1, then
inherently involves the same sense of circularly polarized
radiation. The absorbed component depends on the sign of the
gyromagnetic ratio, but here for convenience we will assume
the right-circularly-polarized (rcp) component is absorbed or
emitted. The left-circularly-polarized (lcp) component has
essentially no effect in pulsed experiments, although in continu-
ous-wave (cs) experiments it can create a small resonance
frequency change known as the Bloch-Siegert shift.19 Most
NMR spectrometers use only a single coil to generate a linearly
polarized field, even though this wastes half of the power,
because the alternative of arraying two perpendicular coils
usually degrades probe performance (although imaging applica-
tions, which are often power-limited, sometimes exploit coils
which generate circular polarization).

(2) NMR experiments areVirtually always done in the
“rotating frame”. This is a significant advantage, because NMR
spectra are narrow: the proton NMR spectrum is typically 10
ppm wide (6 kHz in a 600 MHz spectrometer). Nyquist’s
theorem then implies that the FID need only be sampled every
166 ms, whereas direct detection of the 600 MHz resonances
would normally require nanosecond acquisition time steps. In
a multiple-quantum experiment, the benzene six-quantum
resonance (at a frequency of 3.6 GHz in a 600 MHz spectrom-
eter) actually appears at only six times the average “resonance
offset”13 (the frequency difference between the carrier wave and
the middle of the conventional spectrum). In practice this means
t1 can be incremented in steps of many microseconds, rather
than subnanosecond steps.

(3) Phase shift and pulse delay are completely independent
parameters, eVen for phase modulated pulses which do not haVe
a well-defined carrier waVe. Pulse phase in an NMR spectrom-
eter is usually set by phase shifting the carrier, but, in a more
fundamental sense, pulse phase comes primarily from the use
of only one component of circularly polarized light for absorp-
tion. The concept of a phase shift arises naturally for circularly
polarized light, which is readily decomposed into a nonnegative
pulse envelopeB1(t) and a phaseæ(t) without reference to any
carrier wave:

Delaying a pulse by an amountδ is equivalent to replacingB1-
(t) with B1(t-δ); a phase shift only affectsæ(t). Nuclear spins
can interact with fields in any direction, so the interaction
Hamiltonian Ĥ ) -µb‚BB ) -γIB‚BB decomposes into matrix
elements along all of the applied field directions. Interaction
with a circularly polarized field generates a Hamiltonian with
complex matrix elements.

As noted above, most NMR probes generate a linearly
polarized field in only one direction. Switching the direction
would produce a phase shift; decomposing the field into its lcp
and rcp components shows that a phase shift of 90° (switching
the magnetic field from+x to +y) adds 90° to the rcp
component, and subtracts 90° from the lcp component. However,
this limitation becomes unimportant because the fractional
spectral bandwidth is small, so, for useful pulse sequences, the
time dependence of the phase becomes much slower if we
assume a carrier frequencyω:

Now a phase shift corresponds to a delay in the maximum of
the carrier wave without changing the envelopeB1(t). As long
asB1(t) varies little in time 1/ω (the slowly varying envelope
approximation), the lcp wave has no significant Fourier
component at the resonance frequency and can be ignored. In
translating to the rotating frame, the phase shiftφ(t) becomes
an apparent change in direction of the field. There is no
requirement thatB1(t) encompass an exactly integral number
of cycles of the carrier frequency, so changing the phase can
change the area (in the laboratory frame) but does not change
B1(t) when the slowly varying envelope approximation is valid.

(4) Nuclear induction does not generate electromagnetic
waVes.Sample dimensions are virtually always much smaller
than a wavelength, so detection takes place in what would be
called the near-field limit in optics. The spins do not generate
an electric field perpendicular to their magnetic field. It would
be technically possible to apply radio frequency pulses with
magnetic fields pointed in different directions, but the only effect
of the direction change would be to give an apparent phase shift,
which is done more simply in the rotating frame.

(5) The NMR high-temperature limit imposes additional
selection rules in the simplest pulsed experiments.For the
dynamics of a two-level system the temperature appears only
as a scale factor which reduces the macroscopic magnetization.
It has more significant consequences for multilevel systems.N
coupled spins give 2N energy levels, but the energy difference
between the highest and lowest spin states is still virtually always
much less thankT in solution, so even the highest states are
heavily populated. This is the fundamental reason why a
multiple-quantum NMR experiment requires three pulses.
Single-pulse excitation from the high-temperature equilibrium
density matrix produces only single-spin operators, and cou-
plings need to act during two separate time periods (during the
delayτ to create multispin operators and during the delayt2 to
make them detectable). There is one recent significant exception
to these statements: dipolar couplings between distant spins in
solution permit detection of intermolecular multiple-quantum
coherences in two-pulse experiments if the solution is concen-
trated.20

In ultrafast laser spectroscopy, the situation is somewhat
different:

(1) Linearly polarized fields are more common than circularly
polarized fields, because molecular transition dipole moments
are anisotropic.Most lasers produce linearly polarized light at
their output, and circularly polarized fields are notoriously
difficult to propagate (reflection off mirrors often produces
elliptical polarization).21 In addition, nuclear spins can interact
with a magnetic field in any direction, but the transition electric
dipole moment for nondegenerate states has a well-defined
vector orientation in the molecular frame. Thus the excitation
process is simpler to visualize with linearly polarized light.

(2) Optical experiments areVirtually neVer done in the
“rotating frame”, eVen when the fractional bandwidth is small.
Photodiodes and photomultipliers detect intensity only. Het-
erodyne detection is more difficult and requires a reference
wave, which is phase-coherent with the laser pulses.

(3) Phase shifting is a much more subtle concept for linearly
polarized transitions. The most common method of pulse
sequence design couples delays and phase shifts. Phase shifts

BB1(t) ) x̂B1(t) cosæ(t) + ŷB1(t) sin æ(t) )

Re[(x̂ + iŷ)B1(t)e
-iæ(t)] (2)

æ(t) ) -ωt + φ(t)

BB1(t) ) x̂B1(t) cos(ωt-φ(t))

) Re[(x̂ + iŷ)B1(t) e-i(ωt-φ(t))] + lcp (3)
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again are easy to define unambiguously with circularly polarized
light, which can be decomposed into a nonnegative pulse
envelopeε(t) and a phaseæ(t) without reference to any carrier
wave:

The phase difference between any two waves (at a specified
position and time) is unambiguous whenever neither field
vanishes; it is merely the angle between the electric field vectors.

Delaying a pulse by an amountδ is equivalent to replacing
ε1(t) with ε1(t-δ); a phase shift only affectsæ(t). Again
switching the direction would produce a phase shift with
opposite signs for the rcp and lcp components. When circularly
polarized light can induce circular molecular polarization (for
example, in optical transitions involving p electrons), the optical
and NMR pictures of phase are quite similar. Unfortunately, in
the more common linear dipole case, setting up the optical
analogue of an NMR two-level system requires orienting the
transition electric dipole in thexy-plane (say along thex-
direction). Changing the electric field direction fundamentally
changes the physical interaction; ay-polarized electric field
would cause no absorption. Interaction with a circularly polar-
ized field generates an interaction Hamiltonian with only real
matrix elements, as opposed to the NMR case. For linearly
polarized light along thex-direction,

Hence there is an intrinsic phase ambiguity, since positive and
negative shifts cannot be distinguished experimentally. Phase
becomes a useful concept again only if we can introduce a
carrier wave. Instead of decomposing the interaction into rcp
and lcp components, as in the NMR case, we decompose the
interaction Hamiltonian into “rotating” and “counterrotating”
components

Now a phase shift corresponds to a delay in the maximum of
the carrier wave without changing the enveloped1(t); a time
delay of δ corresponds to replacingd1(t) with d1(t-δ). The
difference between a phase shift of+φ and a phase shift of-φ

physically translates into lagging or leading the carrier wave,
as long asφ(t) and d1(t) vary little in time 1/ω (the slowly
varying envelope approximation). In that case the counterrotating
wave has no significant Fourier component at the resonance
frequency and can be ignored.

Jonas and co-workers have also recently considered the issue
of phase shift versus pulse delay for linearly polarized light9

from a rather different perspective. They distinguish between
phase shifts in the time domain and phase shifts in the frequency
domain. They define a phase shift in the frequency domain
(essentially what we callæ here) by Fourier transforming the
optical field, multiplying positive frequency components by eiæ,
multiplying negative frequency components by e-iæ, and noting
an ambiguity atω ) 0. The complexity is inherent in the use

of linearly polarized light, and the ambiguity atω ) 0 is easily
understood from the arguments above. They thus distinguish a
phase shift from a time delay, which corresponds to a linear
phase shift with frequency. The difficulty with this definition
is that pulses with a small fractional bandwidth always have
rapidly varyingæ(t); hence, we will useφ(t) as the phase in
this work.

Modern ultrafast laser systems work with a pulse repetition
rate far slower than molecular dynamics; for amplified pulses,
one pulse per millisecond (1 kHz) is typical. Pulse sequences
are created by splitting the pulse from the laser system and then
sending multiple copies along different paths. Changing a path
length delays both the envelope and the effective carrier; thus,
a delay will inherently create a phase shift.

A variety of methods have been introduced to control phase
and delay independently. For example, a CW laser beam can be
modulated by a radio frequency pulse sequence in an acous-
tooptic modulator (AOM),22 in a way directly analogous to NMR
pulse sequence generation, but this gives nanosecond rise times
and low peak powers with existing modulators and lasers. The
most common femtosecond pulse shaping methods spatially
disperse the spectrum to independently modulate the different
frequency components.5 If the spatial modulator is an acous-
tooptic modulator, shifting the rf driving frequency corresponds
to generating a delay; phase shifting the rf would phase shift
the laser pulse.23

(4) Most optical experiments do generate electromagnetic
waVes.Optical experiments are usually done with chromophores
distributed in a sample volume much larger thanλ3 and usually
use electromagnetic waves that propagate from a distant source.
Changing the direction of propagation introduces a position-
dependent phase shift. Two sine waves with the same frequency
ω but different directionsk and k + ∆k will constructively
and destructively interfere at different positions and assume all
possible phases over a distance 2π/|∆k| in the direction of the
wave vector difference. Optical spectroscopists have long used
this to advantage in simple experiments, such as the photon
echo,24 to separate weak signals from strong laser pulses by
direction. As we discuss in the last section (consistent with
recent experimental results by Hybl and co-workers8), this
directional variation can also be used to eliminate much of the
phase cycling needed in NMR experiments. However, for
experiments with samples much smaller thanλ3, such as single
ion spectroscopy,25 the seperation of signal by directional
detection does not apply, and phase-cycling schemes may still
be useful.

(5) Optical transitions often leaVe the low-temperature limit.
This means that a single pulse can induce multiphoton transitions
from the ground state, as opposed to the NMR case. However,
there is an important subtlety. If the energy level diagram is
unbounded and accessible via allowed transitions within the
pulse bandwidth, 90 and 180° pulses may be impossible. The
energy levels in a perfect harmonic oscillator, for example, can
only be excited into a coherent state. Thus, anharmonicity plays
a critical role unless only very small excitations are desired.

4. Direct Optical Analogues of Two-Dimensional NMR

In this section we will describe experimentally feasible two-
dimensional optical experiments which are the direct math-
ematical analogue of the NMR COSY experiment. These
experiments have the following properties:

(1) All pulses are assumed to be collinear, with well-defined
interpulse phase relations. Albrecht and co-workers define this
as carrier-delayed pulses.9

εb1(t) ) x̂ε1(t) cosæ(t)+ŷε1(t) sin æ(t) )

Re[(x̂ + iŷ)ε1(t) e-iæ(t)] (4)

εb1(t) ) x̂ε1(t) cosæ(t) )
1/2Re[(x̂ + iŷ)ε1(t)(e

-iæ(t) + eiæ(t))] (5)

æ(t) ) -ωt + φ(t)

H ) -µb‚εb1(t)

) d1(t) cos(ωt - φ(t))

) 1/2d1(t)(e
-i(ωt-φ(t)) + ei(ωt-φ(t))) (6)
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(2) Phase-sensitive detection in the rotating frame is achieved
by adding one more pulse and detecting the excited-state
population when the pulse is phase-cycled. The final pulse serves
the same purpose as the time-gated heterodyne detection that
uses phase-locked pulses to separate the real and imaginary part
of the nonlinear response function in stimulated photon echo
experiments. This method, first demonstrated by Warren and
Zewail for nanosecond pulses,26 was later extended to pico-
second27 and subpicosecond28 and exploits the rotational proper-
ties of the pseudopolarization vector. The rotating-framex
component of the pseudopolarization vector is converted into
-z by a pulse with phasey, or into +z by a pulse with phase
-y. The difference between these two states is a difference in
the excited-state population. Similarly, they component of the
pseudopolarization vector can be detected byx and-x pulses.

Converting the polarization to detectable excited-state popula-
tion with an additional pulse is not quite the same as obtaining
the real and imaginary part of the polarization by heterodyne
detection with a reference field that does not pass through the
sample: the equivalence of these experiments clearly requires
an optically thin sample. Jonas has recently noted9 an interesting
additional difference: the observed signal with phase-locked
pulses is not affected by the dispersive part of the susceptibility
(in the small flip angle limit) if all pulses pass through sample.
For example, each pulse would experience the same phase shift
due to propagation through media with an index of refraction
unequal to 1.

(3) In an NMR COSY experiment, one never observes
multiple-quantum (multiphoton) transitions in the indirectly
detected dimension as discussed above. In an optical COSY
experiment, multiphoton transitions will occur unless the pulse
flip angles are very small. These transitions can be selected by
phase shifting the first pulse.

4.1. Theory.Consider a three-level model system (Figure 2)
where the ground state is coupled by the laser to both excited
states a and b.

The Hamiltonian for interaction of light with matter in the
semiclassical approximation can be written as

Where Ĥ0 is the time-independent molecular Hamiltonian
∑i Ei|i〉〈i| in the absence of the field.µ̂ is the transition dipole
moment operator

|e〉 can represent either|a〉 or |b〉. The classical electric field
EB(t) in eq 7 is described as

whereAB(t) is the (real) amplitude of the pulse envelope,φ is
the phase of the pulse, andΩL is the laser center frequency.

The Hamiltonian for the three level system described in Figure
2 can be repartitioned to become (cast in the matrix form)

where we have referenced the ground-state energy to be zero
and V(t) ) -µbge‚AB(t)/2. The partitioning allows the time-
dependent Schro¨dinger equation to be cast in the interaction
picture

where we have

whereωa,b ) Ea,b/p - ΩL. Note also that the rotating wave
approximation has been evoked. The procedure outlined ef-
fectively discards terms oscillating at optical frequencies. This
is entirely analogous to the intuitive Bloch vector for a two
level system in a rotating frame19 and can be expanded to include
any arbritrary number of states.

If we further assume that the laser pulses used have a square
shape in the time domain, then the density matrix of the system
after a series of pulses and delays can be solved by a series of
propagation operators with time-independent Hamiltonians. For
instance, the density matrix after three square pulses of similar
constant real amplitudeA(t) ) A0 and phase ofφ1, φ2, andφ3

with delayst1 and t2 between them can be written as

whereĤon is the interaction Hamiltonian when the laser pulse
is on for the duration of the pulse lengthτ (eq 12) andĤoff is
the interaction Hamiltonian when the laser pulse is off (i.e. with
V ) 0 in eq 12).

In this experiment, the total fluorescence emitted after the
third pulse is measured as a function of delayst1 and t2. This
will be proportional to the populations in the excited states and
hence proportional to the sum of the two diagonal elements
Faa(t1, t2) + Fbb(t1, t2) of the density matrix in eq 13. A two-
dimensional Fourier transform of this signal, which oscillates
with the detuning frequency or difference frequency between

Figure 2. Energy level diagram of the three level system used in
section 4.1. The detuning frequencies areωag ) 0.007ΩL andωbg )
0.01ΩL, whereΩL is the laser center frequency.

Ĥ(t) ) Ĥ0 - µ̂‚EB(t) (7)

µ̂ ) µbeg|e〉〈g| + µbge|g〉〈e| (8)

EB(t) ) AB(t) e-i(ΩLt-φ) + cc (9)

Ĥ ≡ Ĥrot. + Ĥ′

) (0 0 0
0 pΩL 0
0 0 pΩL

) +

(0 V cos(ΩLt - φ) V cos(ΩLt - φ)
V cos(ΩLt - φ) Ea - pΩL 0
V cos(ΩLt - φ) 0 Eb - pΩL

)
(10)

ip
∂ψint

∂t
) Ĥintψint (11)

Ĥint ) eiĤrot.t/pĤ′e-iĤrot.t/p

) (0 Veiφ Veiφ

Ve-iφ pωa 0

Ve-iφ 0 pωb
) (12)

F(t1, t2) ) e-iĤonτ e-iĤofft1 e-iĤonτ e-iĤofft2 e-iĤonτ ×
Finite

iĤonτ eiĤofft2 eiĤonτ eiĤofft1 eiĤonτ (13)
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transitions, yields the two-dimensional spectrum. For an experi-
ment in which all three pulses have the same phase, the spectrum
is given in Figure 3a. The scale of the axes is the ratio of the
resulting frequencies to the center laser frequency.ωa andωb

were chosen to be 0.007ΩL and 0.01ΩL, respectively. The pulse
area (Vτ/2) is chosen to be 0.4π, and the length of a pulse is
100 fs.

It can be seen that apart from the frequency componentsωa

andωb many other frequency components are present, atω1,2

) 0; ω1,2 ) ((ωa - ωb); ω1,2 ) (ωa andω1,2 ) (ωb.
These spurious frequency components do not contain any

additional information, but they can be very strong, making
interpretation of the spectra more difficult.

The full expression ofFaa + Fbb contains 36 terms, each
containing a different oscillation frequency duringt1 and t2

(corresponding to different peaks on the 2-D spectra), with their
coefficients dependent on the phases of the three pulsesφ1, φ2,
andφ3

The expression forci(φ1, φ2, φ3)’s for various (ω1, ω2) are given
in Table 1. The components in rows 33-36 of Table 1 suffice
to tell us the information that we seek.

The intensity of the signal for a particular frequency pair,
for example (ω1 ) 0, ω2 ) -ωa), can be written as

From Table 1 it can be seen that the part of the signal that
oscillates with the difference frequency((ωa - ωb) or that is
constant during the second propagation timet2 (rows 1-8 of
Table 1) does not depend on the phase of the third pulse.
Therefore a two-experiment phase cycle, consisting of the
subtraction of two experiments with phase ofφ3 ) π in the last
pulse (written asXXX- XXXh), will eliminate these components.
Similarly, cycling the phase of the second pulse:XXX- XXhX
will eliminate the same components during the first propagation
time (rows 9-16 of Table 1). Hence, the elimination of the
components from rows 1-16 can only be achieved by conduct-
ing a four-experiment cycle

Figure 3. Two-dimensional spectra of the three level system described
in Figure 2. (The unit for both axes isΩL, the center laser frequency):
(a) spectrum without any phase cycling; (b) spectrum of the four cycle
experiment described in eq 16; (c) spectrum of the eight cycle
experiment described in eq 21; (d) spectrum with the sixteen cycle
experiment described in eq 22.

TABLE 1: The 36 Terms for the Expression Gaa + Gbb for
the Three Level System Summarized in Equation 14.a

i ω1 ω2 φ1 φ2 φ3

1 0 0 1 1 1
2 ((ωb - ωa) 0 1 1 1
3 0 ((ωb - ωa) 1 1 1
4 ((ωb - ωa) ((ωb - ωa) 1 1 1
5 -ωa 0 e-iφ1 eiφ2 1
6 ωa 0 eiφ1 e-iφ2 1
7 -ωb 0 e-iφ1 eiφ2 1
8 ωb 0 eiφ1 e-iφ2 1
9 0 -ωa 1 e-iφ2 eiφ3

10 0 ωa 1 eiφ2 e-iφ1

11 0 -ωb 1 e-iφ2 e-iφ3

12 0 ωb 1 e-iφ2 e-iφ3

13 ((ωb - ωa) -ωa 1 e-iφ2 eiφ3

14 ((ωb - ωa) ωa 1 eiφ2 e-iφ3

15 ((ωb - ωa) -ωb 1 e-iφ2 eiφ3

16 ((ωb - ωa) ωb 1 eiφ2 e-iφ3

17 -ωa ((ωb - ωa) e-iφ1 eiφ2 1
18 ωa ((ωb - ωa) eiφ1 e-iφ2 1
19 -ωb ((ωb - ωa) e-iφ1 eiφ2 1
20 ωb ((ωb - ωa) eiφ1 e-iφ2 1
21 ωa -ωa eiφ1 e-i2φ2 eiφ3

22 ωb -ωa eiφ1 e-i2φ2 eiφ3

23 ωa -ωb eiφ1 e-i2φ2 eiφ3

24 ωb -ωb eiφ1 e-i2φ2 eiφ3

25 -ωa ωa e-iφ1 ei2φ2 e-iφ3

26 -ωb ωa e-iφ1 ei2φ2 e-iφ3

27 -ωa ωb e-iφ1 ei2φ2 e-iφ3

28 -ωb ωb e-iφ1 e-i2φ2 e-iφ3

29 -ωa -ωa e-iφ1 1 eiφ3

30 -ωb -ωa e-iφ1 1 eiφ3

31 -ωa -ωb e-iφ1 1 eiφ3

32 -ωb -ωb e-iφ1 1 eiφ3

33 ωa ωa eiφ1 1 e-iφ3

34 ωb ωa eiφ1 1 e-iφ3

35 ωa ωb eiφ1 1 e-iφ3

36 ωb ωb eiφ1 1 e-iφ3

a Only rows 33-36 are selected by the phase cycling sequence
described by eq 22.

Faa+ Fbb ) ∑
i)1

36

ai(V) ci(φ1, φ2, φ3)eiω1t1 eiω2t2 (14)

I0,-ωa
) I′0,-ωa

(1)e-iφ2 eiφ3 (15)
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This can be illustrated by considering the example of the
component with 0,-ωa. After phase cycling this becomes

The spectrum after such a four-cycle experiment is given in
Figure 3b. Peaks atω1 ) (ωa,b and ω2 ) (ωa,b will not be
eliminated. Phase-cycling schemes that will achieve the same
are

Y and Yh being pulses with phaseφ ) π/2 andφ ) -π/2;
respectively. An eight-sequence cycle such as

will eliminate signals with components ((ωa,b, -ωa,b) and
((ωa,b, -ωb,a). (Terms 21-28 of Table 1) but not the signals
(ωa,b, ωa,b) and (-ωa,b, -ωa,b) (Figure 3c) (In all spectra plotted
in this paper, the strongest peak has been scaled to 1, ignoring
the DC component.)

Finally, the terms with (-ωa,b, -ωa,b) and (-ωb,a, -ωa,b) can
be eliminated by doing a 16-cycle experiment:

This 16-cycle will give a spectrum with the minimum number
of peaks, simplifying the interpretation of the spectrum (Figure
3d).

4.2. Examples.4.2.1. SeVen LeVel System.The calculations
described in the previous paragraph were extended to two
multilevel systems with different types of coupling. The rotating
picture energy diagram of a seven level system is illustrated in
Figure 4, while the corresponding hamiltonian is as shown in
Chart 1. In this case two levels such ase1 ande2 are coupled
through two transitions involving their common ground-state
g1. All transition dipole moments are chosen to be the same at
1 D. Different transition dipole moments will vary the intensity
of the various peaks, but it will not influence the position of
the peaks, nor will it affect the effect of the phase-cycling
scheme. These spectra are averaged over a Gaussian intensity
distribution to simulate a TEM00 mode of a Gaussian beam with
a maximum pulse area of 2π at the spatial center of the pulse.
Compare the non-phase-cycled spectra in Figure 5a with the
16-cycle spectrum plotted in Figure 5b. Even for a relatively
small system such as this, interpretation of Figure 5a would be

difficult. However, the peaks in the phase-cycled spectrum in
Figure 5b can be readily interpreted. Peak numbers 1-5
correspond to transitions 1-5, as indicated in Figure 4. Peaks
6 correspond to the cross-terms between transitionse1-g1 and
e2-g1, since they are coupled through their common ground
state. Similarly, peaks 7 are the cross-peaks between transitions
e1-g1 ande3-g1 and peaks 8 the cross-peaks between transitions
e2-g1 ande3-g1. Finally, peaks 9 are the cross-terms between
transitionse4-g2 ande5-g2. Note the absence of cross-peaks
between for example transitione1-g1 ande4-g2, since there is
no coupling between levelse1 ande4. The small peaks between
the diagonal peaks 2 and 4 and peaks 3 and 5 are caused by the
overlap of the tails of these peaks and are not caused by any
physical couplings. It has been verified that by increasing the
resolution, these peaks will disappear.

4.2.2. Four LeVel System: Two Coupled Chromophores.The
model system used in this example consists of two coupled
chromophores and is illustrated in Figure 6. As suggested by
Zhang and co-workers,29 such a model can be applied to a wide
range of interesting physical systems. These include molecular
aggregates30 and amide-I bands in proteins.31 The knowledge
of the strength of the couplings between chromophores can often
provide structural information for these systems. In this simula-
tion, the two chromophores have transition energies ofEa )
1.008pΩL andEb ) 0.996pΩL, whereΩL is the center frequency
of the laser pulse used. The double-exciton state will hence be
at 2.004pΩL. The transition dipole moments are set at 0.02 and
0.018 D, respectively. A pulse length of 200 fs and peak electric
field strength of 8.0× 109 V/m is used. This corresponds to an
area of≈1.0 rads.

The Hamiltonian for the two coupled chromophores system

CHART 1

Ĥlocal ) (pωg1 0 V1(t) V2(t) V3(t) 0 0
0 pωg2 0 0 0 V4(t) V5(t)
V1(t) 0 p(ωe1-ΩL) 0 0 0 0
V2(t) 0 0 p(ωe2-ΩL) 0 0 0
V3(t) 0 0 0 p(ωe3-ΩL) 0 0
0 V4(t) 0 0 0 p(ωe4-ΩL) 0
0 V5(t) 0 0 0 0 p(ωe5-ΩL)

) (23)

Figure 4. Energy level diagram of the seven level system used in this
simulation in section 4.2.1. In equation 23 the corresponding Hamil-
tonian is given in the rotating picture withV ) -1/2Aµ. A is the
amplitude of the square laser pulse envelope andµ is the effective
transition dipole moments (set at 1 D in this simulation).

XXX- XXXh + XXhX - XXhXh (16)

I0,-ωa
) I′0,-ωa

[(1)(1)(1)-(1)(1)(-1) + (1)(-1)(1) -

(1)(-1)(-1)] ) 0 (17)

XYX- XYXh + XYhX - XYhXh (18)

XYY- XYYh + XYhY - XYhYh (19)

XXY- XXYh + XXhY - XXhYh (20)

XXX- XXXh + XXhX - XXhXh + XYX- XYXh +
XYhX - XYhXh (21)

XXX- XXXh + XXhX - XXhXh + XYX- XYXh + XYhX -
XYhXh + i[XYY- XYYh + XYhY - XYhYh + XXY- XXYh +

XXhY - XXhYh] (22)
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expressed in the local excitation basis set is

whereκ defines the strength of the coupling. This Hamiltonian
can be diagonalized and expressed in the coupled basis set. After
introducing the coupling with the radiation field, the Hamiltonian
in the coupled basis set can be repartitioned as

whereVn(t) is the coupling with the optical field in the coupled
basis,Vn(t) ) Vn cos(ΩLt - φ) andE( ) 1/2(Ea + Eb ( [(Ea -
Eb)2 + 4|κ|2]1/2). The time-independent interaction picture
Hamiltonian, analogous to eq 12 can then be obtained.

The two-dimensional spectra with full phase cycling were
calculated for different values of couplingκ. Forκ ) 0, whereby
the two chromophores are decoupled, the 2-D spectrum is shown
in Figure 7a. The two peaks correspond to the detuning
frequencies of the chromophores. For a coupling ofκ )

0.005pΩL, the 2-D spectrum is shown in Figure 7b, the cross-
peaks arise from the coupling between the two chromophores.
The intensity of the cross-peaks reflects the strength of the
coupling.

4.3. Comparison: Directional Detection vs Phase Cycling.
By using the approximation of square pulses and evoking the
rotating frame picture, we can use a time-independent Hamil-
tonian during each pulse and thus explicitly write out eq 1 in
terms of rotation operators. Such a treatment is the exact
mathematical analogue of a COSY experiment, with one
exception. In a COSY experiment, restriction to the high-
temperature limit implies that only single-photon transitions have
been excited at the beginning oft1; in the optical experiment,
multiphoton transitions can be excited as well.

For the purposes of comparison between optical and NMR
methods, we will instead use the standard optical technique of
expanding the propagation operator in a perturbative series. Such
an expansion only makes sense if the propagatorsÛ and V̂ in
eq 1 in fact do not grossly perturb the population, but this is
the usual limit with ultrafast laser pulses (which rarely have

Figure 5. Two-dimensional spectra of the seven level system described
in Figure 4 (the unit for both axes isΩL, the center laser frequency):
(a) spectrum without any phase cycling; (b) spectrum with the sixteen
cycle experiment described in eq 22. Peaks 1-5 correspond to
transitions 1-5 as indicated in Figure 4. Peak 6 corresponds to the
cross-terms between coherencese1-g1 ande2-g1. Peak 7 is the cross-
peak between coherencese1-g1 ande3-g1 and peak 8 the cross-peak
between coherencese2-g1 ande3-g1. Peak 9 is the cross-term between
coherencese4-g2 ande5-g2.

Figure 6. Energy level diagram for two chromophores coupled through
interaction κ. The states are in the local excitation basis. The
Hamiltonian describing the system is given in eq 24.

Figure 7. Two-dimensional spectra of two coupled chromophores
described in Figure 6 (The unit of both axes isΩL, the laser center
frequency): (a) spectrum when system has no coupling,κ ) 0; (b)
spectrum when system has a coupling ofκ ) 0.005pΩL.

Ĥlocal ) (0 0 0 0
0 Ea κ 0
0 κ Eb 0
0 0 0 Ea + Eb

) (24)

Ĥcoupled≡ Ĥrot. + H′

) (0 0 0 0
0 pΩL 0 0
0 0 pΩL 0
0 0 0 2pΩL

) +

(0 V1(t) V2(t) 0
V1(t) E+ - pΩL 0 V3(t)
V2(t) 0 E- - pΩL V4(t)
0 V3(t) V4(t) E+ + E- - 2pΩL

)
(25)
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significant flip angle). We take this approach to show that, in
fact, the procedure of phase cycling is very much analogous to
the direction-dependent detection of polarization.

For the sake of simplifying the discussion, the three pulses
involved in the experiment are modeled asδ functions in time.
The electric field can then be described as

wheret1 andt2 are the first and second time delays, respectively.
The three pulses have a definite phase relationship between them
described asφ1, φ2, andφ3. Although the directional vectorsk
are labeled, in the phase cycling procedure, the directional
vectors do not affect the experiment, since the pulses were
chosen to be collinear.

Those terms that survive after the phase cycling process for
our 2-D experiment (as described in section 4.1), i.e. rows 33-
36 in Table 1, arise from a fourth order term in the density
matrix expression. For instance, for row 34 (a cross-peak
corresponding to (ωa, ωb)), the relevant element from the fourth
order density matrix instantly after the last pulse (the excited-
state population where the detectable fluorescence arises from)
is32

whereΩL is the laser center frequency and the otherΩ’s and
Γeg’s are the frequency and generic decay constants, respectively,
of the coherences.ωa ) Ωag - ΩL andωb ) Ωbg - ΩL. The
Feynman diagram for the process described in eq 27 is given
in Figure 8. As is apparent from eq 27, the use of phases to

label the interaction on this double-sided Feynman diagram
serves the same purpose as the directionalk vectors that are
more commonly used.

Thus, by detecting excited-state population via the measure-
ment of fluorescence, we are in fact detecting the sum of all
possible directional components of the polarization. All possible
quantum-coherence pathways (or Liouville-space pathways) are
detected simultaneously in this experiment. The phase-cycling
scheme serves to select one particular Liouville-space pathway.

5. Combining the Best of Both Worlds

Pulse phase control plays three major roles in NMR pulse
sequence design: it permits coherence pathway selection,
modification of the effective Hamiltonian, and heterodyne
detection. For optical samples much longer thanλ along the
propagation direction, coherence pathway selection can also be
achieved by directional detection with non-collinear pulses. In
NMR the transverse magnetization does not produce a propagat-
ing electromagnetic field, so directional detection is not useful.

For example, the photon echo is the optical analogue of the
spin echo. In a NMR spin echo with nonperfect pulses, ((90+
δ)x - t1 - (180+ ε)x - t2), there is also a free induction decay
after the second pulse, and if the delay is short, there might
also be some residual FID signal from the first pulse which
survives the second pulse. In the perturbation picture, both of
these are the first order processes; for example, the first FID
reflects interaction with the first light pulse but not the second.
These processes give rise to additional frequency components
which could be suppressed by phase cycling in NMR. As was
recognized long ago in optics, these imperfections are missing
in the non-collinear laser experiment. The detection of (for
example) the photon-echo signal at 2k2 - k1 only picks out the
component that evolves as a+1-quantum coherence during the
first period and as a-1-quantum coherence during the second
period. For linear operators in the Hamiltonian (for example,
local variation in the resonance frequency due to lattice
imperfections) the frequency shift on the-1-quantum and+1-
quantum transitions are identical, so the sum of the two
evolutions causes a refocusing (the echo).

However, directional variation is not as versatile as phase
control. Directional variation forces an averaging over all
possible phase relations. As long as the desired coherence is
only phase-modulated by phase shifts, this simply creates a new
spatial direction for the dipoles to reinforce. Thus, for example,
the magnitude of the photon echo is unaffected by the relative
phase of the two laser pulses. However, in general photon echoes
do not remove all “inhomogeneous broadening”. Consider, for
example, a four level system consisting of the fundamental
transitions of two different CdO stretches in an ensemble of
molecules with different conformations. At any instant the angle
and separation between the two transition dipoles vary across
the ensemble, as does the magnitude of the coupling matrix
element. This physical inhomogeneity would cause apparent
dephasing of the macroscopic polarization after a single pulse,
but this is a bilinear interaction which is not refocused by a
photon echo.33 Mathematically, taking either of the allowed
transitions and reversing all of the state labels (as would happen
with a π pulse) still changes a+1-quantum transition into a
-1-quantum transition, but the frequency of the transition
changes.

Such broadening mechanisms can be reversed, but only by
pulses with a well-defined phase relation across the entire

Figure 8. One of the double-sided Feynman diagrams representing
the coherence transfer pathway that gives the desired two-dimensional
spectrum. It is the visual representation of eq 27. Each interaction is
labeled by the phase andk-vector of the optical pulse. By using the
phase cycling scheme described in eq 22, only the pathway represented
by this diagram shows up in the spectrum.

EB(t) ) (δ(t + t1 + t2)e
iφ1 eik1‚r + δ(t + t1)e

iφ2 eik2‚r +

δ(t)eiφ2 eik3‚r) e-iΩLt + c.c. (26)

Fbb
(4) (t ) 0) ∝ ∫∫∫∫dτ1 dτ2 dτ3 dτ4 ×

δ(t1+t2-τ1-τ2-τ3-τ4) eiφ1 eik1‚r e-iΩL(-τ4-τ3-τ2-τ1) ×
δ(t2-τ2-τ3-τ4) e-iφ2 e-ik2‚r eiΩL(-τ4-τ3-τ2) ×

δ(t2-τ3-τ4) eiφ2 eik2‚r e-iΩL(-τ4-τ3) ×
δ(-τ4) e-iφ3 e-ik3‚r e-iΩL(-τ4) e-iΩagτ1 e-Γagτ1 ×

e-iΩggτ2 e-Γggτ2 e-iΩbgτ3 e-Γbgτ3 e-iΩbbτ4 e-Γbbτ4

) eiφ1 eik1‚r e-iφ3 e-ik3‚r e-iωat1 e-iωbt2 e-Γagt1 e-Γbgt2 (27)
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sample. Consider two pulse-sequences given in eqs 28 and 29

For a two-level system, it is possible to choose the delay between
the first and the second pulse,t1, in such a way that the second
X-pulse will return the pseudo-spin vector exactly back along
thez-axis. If that is the case, the phase cycling of the third pulse
will result in no signal at all. At that same delay, theY-sequence
will still give a signal, since theY-pulse will not return the
polarization along thez-axis.

This effect is illustrated in Figure 9a, for the three level system
discussed in Figure 2. The Fourier transformation with respect
to t2 of the fluorescence signal is plotted. The value oft1 was
fixed at 174 fs. The area of the pulse (on-resonance) was 0.4
π, and the pulse length is again 100 fs. It can be seen that, for
the Y-sequence, the peak for the low-frequency transition is

almost completely eliminated. For theX-sequence, both peaks
are present. In the case of a two-level system, the low-frequency
peak would have been eliminated completely att1 ) 173 fs. In
this case this peak cannot be completely eliminated, because
of the coupling between the two transitions. However, it can
be minimized at at1 close to the expected value. In Figure 9b,
the calculation was repeated with a Gaussian intensity distribu-
tion, having a maximum area of 0.4π. Since both transitions
in this example are off-resonant, the timet1 for which the peak
is eliminated depends on the intensity of the laser. However,
as can be seen from this figure, the peak can still be greatly
reduced if a value oft1 ) 182 fs is used. Finally, in Figure 9c
it is shown that also if the peaks are inhomogeneously
broadenend, they can still be eliminated. In this case,t1 was
chosen as 174 fs again. Thus, by switching betweenX andY
pulses for a fixed delayt1 and phase cycling the last pulse, one
can switch a transition on and off. More generally, the 90x -
90y combination on resonance is the simplest pulse sequence
which refocuses bilinear interactions (it is known as the
“quadrupolar echo” because of its use in spin-1 systems, which
are mathematically quite similar to the case illustrated here).
In any system with bilinear couplings it produces a quite
different state than does 90x - 90x and thus could be used to
measure dipolar interactions (and their fluctuations, which would
not be refocused).

6. Conclusion

In this paper we have proposed a technique to detect the time-
dependent polarization introduced into a sample by the action
of two pulses delayed by a timet1. At time t2 after the second
pulse, a third pulse is applied which will partly convert the
polarization into a population. This population is then detected
by collecting the fluorescence from the sample. With this
technique, couplings between transitions in the system can be
detected through the presence of cross-terms in the two-
dimensional spectrum. Additional, unwanted cross-peaks arise
from nonperfect pulse areas, simultaneous excitation of two
transitions, and negative frequency components, but it has been
shown that a phase-cycling scheme can simplify these spectra
tremendously. With current pulse shaping techniques, it has
become straightforward to create the three delayed pulses with
a phase independent of their delay that are needed for such
experiments. Model calculations have shown that a sequence
of experiments where the phases of the second and third pulses
are rotated can eliminate all DC components and the negative
frequency components.

As noted earlier, COSY and NOESY experiments in NMR
only give information that is also available from double-
resonance techniques; they merely present the information in a
more convenient form. Similarly, two-dimensional optical
COSY experiments (either the two-pulse experiment with
heterodyne detection or the three-pulse experiments discussed
here) are not necessarily better than dual-frequency pump-probe
experiments. The situation changes if we adapt the model two-
dimensional experiment (Figure 1) to includedirectional
Variation between the preparation sequence and the mixing
sequencebut limit the variation in either sequence individually.
For example, suppose all the preparation pulses have wave
vector kp and the mixing pulses have wave vectorkm. Now,
for example, the preparation sequence can be designed with
delays which select for a specific coupling magnitude, or refocus
couplings over some range, and detection in the direction 2km

- kp restricts the detected signal to a specific coherence

Figure 9. Elimination of selected transition using pulse sequences
given in eqs 28 and 29. (a) Fourier transformation of the fluorescence
signal as a function oft2 with a fixed value oft1. Using theY-sequence,
the transition atω2 ) 0.007ΩL has a minimum intensity fort1 ) 174
fs for a pulse with an area of 0.4π. With theX-sequence this peak is
clearly visible. (b) The same measurement as in a, but with a Gaussian
intensity distribution with a peak area of 0.4π. In this case the peak at
ω2 ) 0.007ΩL has a minimum intensity for theY-sequence witht1 )
182 fs. (c) The same measurement as in a, but with inhomogeneously
broadened transitions. If the system is inhomogeneously broadened,
the peak can still be eliminated witht1 ) 174 fs, if the individual peaks
are well-separated.

X-sequence:

XXX-XXXh-iXXY-iXXYh (28)

Y-sequence:

XYX-XYXh-iXYY-iXYYh (29)
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pathway. The final role of the pulse phase is heterodyne
detection. As Hybl and co-workers have shown,8 this can be
done in a straightforward way with multiple laser pulses and
variations in direction, but transformation to the rotating frame
is then quite difficult because pulse delay and pulse phase are
intimately coupled. Here we suggest taking advantage of what
is normally seen as a weakness of the spatial pulse shaping
methodssbeam translation proportional to delay.34 With one
more lens, this becomes an angular variation which remains
coherent in the apparatus as the delay is increased.

More generally, then, we conclude that pulse direction
variation, which has long been a stable of coherent optical pulse
sequences, is equivalent to pulse phase control only for very
simple sequences. Control of both simultaneously for femto-
second pulse sequences, which is only now technologically
possible, has significant advantages and may open up a new
generation of optical techniques.
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